Форум Peoplechat

Объявление

ДЕЛАЙТЕ СВОЙ ВЫБОР НА КОНКУРСАХ!!!

Информация о пользователе

Привет, Гость! Войдите или зарегистрируйтесь.


Вы здесь » Форум Peoplechat » тачки » 9ки моя любимая мафынка всё про её тюнинг


9ки моя любимая мафынка всё про её тюнинг

Сообщений 1 страница 4 из 4

1

Долгое время тюнинг переднеприводных ВАЗов представлял из себя очень однобокий процесс и сводился в основном к токарным работам: увеличить диаметр цилиндров переточить валы и так далее. По большому счету у всех все было одинаково. Все новые и новые адепты тюнинга российских автомобилей проходили одни и те же этапы пути постройки двигателя. Многие из них достигали вершины – когда дальше либо свап мотора либо продажа машины. Первое очень проблемно – второе очень накладно. Более того на этой самой вершине мало у кого с мотора можно было наскрести 160-170 л.с. Такая ситуация конечно же всех не устраивала и все больше стало появляться моторов с турбонаддувом. Улитки открыли новые горизонты в плане мощности. Теперь мощностью в 200+ сил на ТАЗе никого не удивишь, а на тусовках все чаще стали звучать вопросы типа «а у тебя сколько дует в пике?».

Человек который построил эту 8ку – один из членов легендарного клуба team-rs. Это собрание совершенно безбашенных товарищей которые не боятся идти не стандартными путями в тюнинге, особенно двигателей. Хозяин желтой восьмерки Александр, или Sander как знает его большая часть московской тусовки.
Что было

Первая встреча будущего владельца со своим боевым конем произошла случайно. Увидел ее рядом с одним из автосервисов Красногорска. Закаркашеная оранжевая восьмерка в разукомплектованном состоянии стояла под слоем грязи и листьев в дальнем углу сервиса. В ходе расспросов выяснилось, что хозяин сервиса хотел построить себе машину для участия в ралли но не осилил бюджет и забросил затею. В принципе донор для тюнинга был неплохой, особенно учитывая тот факт что в документах значился номер двигателя б/н. Эта машина изначально была «второй в семье». То есть ее предназначение не ежедневные поездки на работу, а покатушки в свое удовольствие. Конечно, чтобы удовлетворять своего владельца машина должна быть очень мощной и не мега красивой. Первый вариант мотора был собран атмосферным на дросселях. Какое то время это все поездило. Потом хозяин захотел еще больше мощности и стал думать о трубонаддуве. Последним аргументом для постройки нового мотора стал спор владельца 8ки со своими друзьями на тему взорвется ли мотор или нет. Чтобы доказать всем что надежный турбомотор возможен Саша продал дросселя и ушел в гараж.

Что получилось

Через какое то время он явил свету новую эволюцию своего ВАЗа. За основу низа был взят блок с масленными форсунками от Калины, он выше на 23 милиметра чем стандартный 2112, диаметр цилиндра 82 мм., ход поршня 75.6, шатун оставил стандартный десяточный в 121 мм, так же сюда прописалась пластина усиления 20мм. В головке блока пропилены каналы, клапана 31х28, валы стоковые. В топливной системе теперь трудятся форсунки от Saab 2.3T, установленные в топливную рейку от машины концерна VAG, механический топливный регулятор TRE. Вершиной тюнинговой мысли можно считать насос Walbro повышенной производительности рассчитанный на моторы до 600 сил. На впуске алюминиевый ресивер от 2112 купе группы N. Обычно турбины ставят чуть ниже выпускных окон головки, но в подкапотном пространстве 8ки не так много места поэтому в течении 20 минут было найдено другое место для турбины – над выпускными окнами. Сама улитка была взята субаровская IHI VF10. Во первых не дорогая во вторых распространенная. Выпускной коллектор естественно пришлось делать самостоятельно – сварили аргоном из промышленных фитингов из нержавейки. На наш вопрос – как в такой компоновке подкапотного пространства чувствует себе собственно сам капот – хозяин ответил, что в жару и после долгих поездок турбина и мотор так прогревают капот что он выгибается горбиком, правда с падением температуры все встает на свои места. Вопрос только насколько бедного капота хватит.

Выпуск тоже самодельный на 60 мм трубе, тоже из нержавейки. После задней балки сделана пацанская разводка на две стороны. Управляет всем этим великолепием ЭБУ Январь 5.1 работающий по датчику абсолютного давления.
Ремонтопригодность

Как видно мотор собран на стоковых компонентах насколько это возможно. Сделано это для того чтобы если что-то наебнется – то не иметь проблем с поиском нужной детали. После постройки и отладки мотора – загнали восьмерку на стенд. Замеры проводились на давлении в 1.5 бара в пике - 251 л.сила на 6420 об. и 327 ньютонов на 4240 об. Цифры говорят сами за себя.

Характер движения на этой машине примерно следующий: едешь ночью по МКАД, в левом ряду небыстро, никого не трогаешь, сзади приближается и начинает гонять фарами иномарка … уходишь правее, даешь поровняться с собой и давишь на педаль. Обычно гонки заканчиваются очень быстро – иномарка упирается в ограничитель а желтая восьмерка продолжает разгон. Конечно, помимо мотора этому способствует и самая длинная КПП которая только возможна на переднеприводных изделиях АвтоВАЗа – пара 3.7 и 5й ряд плюс винтовая блокировка. Штатное сцепление как известно момент более 20 кг не держит поэтому здесь керамический диск сцепления Clutchnet №6 и корзина Sachs.

Как и любая машина для души и прохвата эта восьмерка сменила не одну конфигурацию подвесок. На момент съемок машина была настроена под асфальт, стоит комплект кольцевой подвески «Кубок лада», треугольные рычаги Ралли клуб и передний стабилизатор в 21мм толщиной. Тормоза, как нестранно для этого мощнейшего аппарата, стоят вполне бюджетные – спереди вентилируемые тормозные диски диаметром 284 мм (т.н. под 15е колесо) и 8е суппорта с колодками АТЕ, сзади ЗДТ на дисках 234 мм с 8ми же суппортами. Контуры перекинуты, распределение тормозных усилий регулируется из салона делителем Tilton. Ручника нету вообще т.к. хозяин считает его «баловством», ну да Бог ему судья.

Вообще в team-rs не приянто уделять внешнему виду автомобиля хоть сколько-нибудь внимания. Все строят моторы, а кузов вокруг мотора сгнивает. Однако в этом случае все совсем не так. Внешнему виду здесь уделено внимания не меньше чем подвеске или тормозам. Помимо того, что вся машина перекрашена краской Sikkens, на нее установили обвес Lukoil Racing, более того Саша достал диски 15”, которые использовала команда Лукоил на своих гоночных восьмерках.

Салон, несмотря на спартанскую пустоту все же не лишен комфорта. Центральное место конечно занимает раллийный каркас от фирмы «Московии» из подмосковного Жуковского. В маленьком восмерочном салоне он занимает много места, и весь остальной салон строился вокруг него. Первое что бросается в глаза, когда открываешь дверь – это торпеда от BMW E36. Бмвэшный щиток приборов убран и его место занял тахометр, указатель давления масла и наддува от Autogauge. Водитель восседает в ковше Sparco Pro 2000, пассажиру достался ковш по скромнее - фирмы Sabelt. Чтобы можно было ездить без шлема – стоят четырехточечные ремни Shroth. Пристегиваться обязательно – либо пристегиваешься либо вылезаешь из машины и идешь пешком. Этот подход себя оправдал – один раз восьмерку сильно протаранила в борт другая машина, да так что она подлетела над землей, Александр вышел из этого инцидента отделавшись, разве что, нешуточным испугом. Драйверскую композицию завершает настойщий раллийный трехспицевый руль Sparco. Штатная шумоизоляция убрана, но ее место заняли листы шумоизоляции от STP потому как облегчение облегчением а комфорта хоть минимального но хочется.

А спор то Саша выйграл. Двигатель откатал без каких либо серьезных поломок весь сезон с пробегом в 10 000 километров. Ну если не считать за поломку постоянно лопающийся выпускной коллектор – это вообще общая беда на турботазах.

В итоге хочется сказать о том что наш журнал искренне рад что тюнинг машин российского производства вышел на новые рубежи. Надеемся что скоро тюнинговые десятяки будут выглядеть так же сочно и круто и ехать будут так же быстро как какие нибудь VW или Citroen о которых пишут наши коллеги из других стран.

При покупке в ПТС этого автомобиля номер двигателя стоял б/н. Это естесвтенно очень удобно, т.к. ты можешь использовать любой блок цилиндров. Этот факт так понравился Александру что он продавив местных гаишников сделал себе так же и VIN – б/н и номер кузова – б/н. Из данных на машину осталось только модель и год выпуска (1989).

0

2

В выборе нового двигателя никаких компромиссов: ставим только самое быстрое, что есть в арсенале ВАЗа: роторно-поршневой мотор под индексом ВАЗ-415. В стоке при объеме 1308 кубов он развивает 140 л.с. и 186 Нм момента. Эти показатели можно улучшить обычными недорогими способами – что и было сделано. В стандартную кастрюлю воздушного фильтра карбюратора встал фильтр нулевого сопротивления, а вместо стандартной выпускной системы был сварен прямоточный выпуск на 70-мм трубе без резонатора с одной банкой Pro-Sport.

Все это дало прибавку приблизительно в 10 л.с. Поставим пятиступенчатую КПП 2108 с главной парой 4.1, стандартным рядом и короткоходной кулисой.

0

3

Поршни

Один из самых значимых элементов автомобильного двигателя – поршень. Он занимает центральное место в процессе преобразования химической энергии топлива сначала в тепловую, а затем в механическую. От того, насколько хорошо он справляется со своими обязанностями, в значительной степени зависит эффективность и надежность мотора. Особенно когда речь идет о спортивном применении или о тюнинговой модификации автомобиля. Вопрос о применении специальных поршней в случае повышения мощности всегда встает перед конструктором. В силу множества функций и противоречивости свойств поршень превращается в одну из самых сложных деталей мотора. Такое положение подтверждается тем, что редкие автомобилестроительные компании проектируют и изготавливают их самостоятельно для своих моторов. Чаще всего они пользуются услугами фирм, которые специализируются в этой области. Многообразие форм и размеров поршней является одной из причин, почему так много тайн, секретов и небылиц распространяется вокруг этого куска металла. А так как это еще и технологически сложно, практически неисполнимо в условиях стандартного машиностроительного производства, то проблема соответствия поршня требованиям модифицированного мотора становится камнем преткновения для многих тюнинговых компаний. Кроме того, штучное производство этих сложных изделий финансово обременительно. В этой ситуации интуитивные представления некоторых тюнеров о том, что «улучшенный» двигатель должен иметь «улучшенные» поршни, приводит к тому, что сначала двигатель оснащается чем-то доступным, а потом такое решение находит свое наукообразное обоснование.

Какие требования предъявляются к поршням, и что от чего зависит. Во-первых, поршень, перемещаясь в цилиндре, позволяет расширяться сжатым газам, продукту горения топлива, и совершать механическую работу. Следовательно, он должен сопротивляться высокой температуре, давлению газов и надежно уплотнять канал цилиндра. Во-вторых, представляя собой (вместе с цилиндром и поршневыми кольцами) линейный подшипник скольжения, он должен наилучшим образом отвечать требованиям пары трения с целью минимизировать механические потери и, как следствие, износ. В-третьих, испытывая нагрузки со стороны камеры сгорания и реакцию от шатуна, он должен выдерживать механическое воздействие. В-четвертых, совершая возвратно-поступательное движение с высокой скоростью, должен как можно меньше нагружать кривошипно-шатунный механизм инерционными силами.

Таким образом, проблемы этой важной детали двигателя можно разделить на две большие группы. Первая – это тепловые процессы. Вторая – механические. Рассмотрим первую группу. Здесь необходимо коснуться вопроса, который всегда обсуждается при изготовлении специальных поршней для спортивных или тюнинговых моторов. Сколько колец будет у нового поршня, какой толщины они должны быть? С точки зрения механики, чем меньше колец, тем лучше. Чем они уже, тем меньше потери в поршневой группе. Однако при уменьшении их количества и высоты неизбежно ухудшаются условия охлаждения поршня, увеличивая тепловое сопротивление: днище – кольцо – стенка цилиндра. Поэтому выбор конструкции – всегда компромисс. И чем быстроходней мотор, тем жестче рамки. Скоротечность процессов диктует меньшие требования к уплотнению. Растущие со скоростью механические потери необходимо уменьшать, иначе все, что преобразовалось в механическую мощность, не дойдет до колес. Однако и количество тепла в единицу времени вырабатывается пропорционально больше, мостик для охлаждения требуется как можно шире. Вот и нужно одновременно чтобы кольца были и узкие, и широкие. И нужно их два для быстроходности и три для эффективного охлаждения поршня. Разрешение этой задачи – компетенция конструктора. Результат его работы — сбалансированность двигателя. В настоящее время инженерами, работающими в производственных компаниях и научных центрах, накоплен огромный материал, на его основе созданы расчетные методы, позволяющие с большой точностью предсказать поле температур и характеристики конкретного изделия. Для начала представим, чего в принципе мы ожидаем от идеального поршня. Как бы его ни гнули, толкали, мяли, бросали из жара в холод, он должен оставаться одинаковым с большой точностью. Поршень находится в сопряжении с кольцами, поршневым пальцем и цилиндром. Если механические нагрузки будут столь велики, что канавки деформируются и поршневые кольца потеряют подвижность, тогда работа мотора будет нарушена. Если поршневой палец окажется зажатым в отверстиях бобышек, скорее всего, поршень разрушится. Если зазор от стенок цилиндра станет большим, он потеряет ориентацию, а если маленьким – размажется по стенкам. Максимальное давление в камере сгорания у высокофорсированных моторов достигает 100 атмосфер. Усилие, с которым поршень толкают газы, измеряется тоннами. Максимальная скорость, с которой он перемещается в быстроходном моторе, достигает 120 км/час. При этом 200 раз в секунду тормозится до полной остановки.

Идеальный поршень в таких жестоких условиях должен быть абсолютно жестким, т. е. никак не менять свою форму. Тепловые нагрузки не должны его деформировать. Его вес должен быть близок к нулю. Износ от контакта с сопряженными деталями должен отсутствовать. Понятно, что в природе нет материалов, отвечающих всем этим требованиям. Прежде чем остановиться на материалах, из которых изготавливают поршни, попробуем понять, почему такие требования предъявляются к поршням. Одним из главных показателей качества работы поршневой группы являются механические потери, которые неизбежны во время движения. Для того чтобы преодолевать силы трения, препятствующие движению, часть механической энергии, полученной от рабочего тела, будет потеряна на нагрев. Доля этих потерь, приходящаяся на поршневую группу в общих механических затратах двигателя, весьма высока. Иногда она превышает 50% от общих потерь в двигателе. Желание многих тюнеров увеличить рабочие обороты мотора, и за счет доработки сечений каналов, формы камеры сгорания и т.д. получить большую мощность при высоком крутящем моменте упирается в растущие механические потери. Значительная часть сил сопротивления растет линейно со скоростью, следовательно, потерянная мощность растет в квадратной зависимости. Если не принять меры по снижению механических потерь, то все старания могут быть напрасны. Неизбежен тот момент, когда вся механическая энергия будет потрачена на себя, и колеса вращать будет просто нечем. Поэтому подход к поршневой группе как к линейному подшипнику скольжения имеет первостепенное значение в конструкции поршня. Главный вклад в сопротивление движению вносят поршневые кольца, которые в силу их функций должны быть плотно прижаты к стенкам цилиндра. Однако роль поршня состоит в том, чтобы кольца все время были правильно ориентированы, и была обеспечена их работоспособность. Также желание конструктора не допустить сухого контакта тела поршня с гильзой цилиндра диктует жесткие требования к его геометрии. Дело в том, что, как и в любом подшипнике скольжения, роль разделительного слоя здесь играет масло, препятствующее контакту металлических поверхностей. А точнее, масляный клин, образующийся в зазоре при движении деталей. Высокое давление в масляном клине, способное противодействовать прижимающим силам, может существовать только в зазорах, исчисляемых тысячными долями миллиметра. Величина силы пропорциональна площади, на которую масляный клин давит. Поэтому так важно во время работы сохранять параллельность поверхности юбки поршня стенкам цилиндра с такой точностью. Понятно, что не допускается никакой шишковатости, иначе возникнут локальные контакты, которые станут генераторами тепла и приведут к развитию неблагоприятных процессов по всей поверхности. Не забудем еще и о поршневом пальце, которому необходимо создать условия качающегося подшипника скольжения с его стабильными зазорами, исчисляемыми теми же сверхмалыми величинами. В случае идеального поршня все более-менее понятно. Каким он получится после механической обработки, таким он и будет всегда, при любых условиях. Тогда можно заранее с большой точностью придать ему нужные формы. А как быть с реальными материалами? Которые от механических нагрузок изгибаются. От температуры распухают. От разностенности коробятся. От неоднородности материала покрываются буграми и шишками. Нет другого пути, как при изготовлении придать ему такие формы, которые учтут все искажения, возникающие при реальных нагрузках во время работы. Именно поэтому поршень имеет такую сложную форму. По высоте он бочкообразный, потому что неравномерный нагрев вызывает большее расширение там, где температура выше. В сечении он овальный, так как механические нагрузки заставляют поршень «обвисать» на пальце, как лист бумаги, лежащий на карандаше. Причем в каждом сечении и овальность, и бочкообразность имеют свою величину. Величина деформации зависит от толщины металла, образующего стенки поршня. Увеличение толщины повысит сопротивляемость нагрузкам, но рост массы приведет к увеличению инерционных сил, которые быстро испортят весь кривошипно-шатунный механизм. Почему же автомобильные двигатели уверенно прогрессируют в сторону их высокооборотности? На заре моторостроения просто изготавливался поршень совершенно цилиндрической формы и двигатель запускали. Давали ему поработать, не доводя мотор до разрушения, и разбирали. Следы контакта с гильзой устраняли механической обработкой и повторяли эксперимент, увеличивая нагрузку. Затем снова обрабатывали места контакта и снова нагружали. Если выявлялись слабые места, изготавливали новый поршень. Повторялось это многократно до тех пор, пока двигатель с полной нагрузкой не начинал работать стабильно, и поршень признавался удовлетворительным. В современном мире с хорошей точностью можно расчетными методами проектировать геометрию вновь создаваемых поршней. Последующие за расчетами испытания приводят, как правило, к корректировке, однако количество экспериментов несравнимо уменьшается. Тем не менее, подогнанный под условия работы поршень нельзя считать абсолютно соответствующим предъявляемым требованиям. Ведь величины деформаций, которые компенсируются предварительно заданной формой, зависят и от теплового режима, и от величины сил, на него действующих. Так как автомобильный двигатель многорежимный, эксплуатируемый в широком диапазоне нагрузок и температур, скорее всего, поршень будет хорош только для некоторого диапазона условий работы. Это одна из проблем автомобильных двигателей в целом. В серийном производстве, как правило, на базе одного мотора одновременно выпускается целое семейство разных агрегатов, предназначенных для разных целей. А выпуск новых автомобилей, требующих новых двигателей, часто сопровождается модификацией уже отработанных конструкций с целью удовлетворить новым требованиям. Известны факты, когда низ мотора, включающий блок цилиндров и коленчатый вал с его подшипниками, практически без изменений стоял на конвейере десятилетиями, переходя из одного кузова в другой. Даже более того, применялся и для бензиновых, и для дизельных моторов одновременно. Поршневые группы, как более зависимые от назначения двигателя, почти всегда подвергались модификации. Именно поэтому в номенклатуре производителей поршней такое большое разнообразие их форм. Поэтому, когда мы хотим получить от серийного двигателя больше мощности, необходимо сознавать, что серийный поршень не будет соответствовать новым требованиям. Случай применения дополнительного наддува или окислителя, такого, как закись азота, создает новые условия работы поршневой группы.

Существенным моментом в конструкции является материал, из которого поршень изготовлен. Автомобильные поршни изготавливаются преимущественно из алюминиевых сплавов, реже из чугуна. Чугун, обладая рядом таких качеств, как низкий коэффициент линейного расширения, равный по величине материалу гильзы цилиндра, высокая термостойкость, высокая прочность, отличные подшипниковые свойства, в настоящее время практически не применяется. Тормозом послужили два обстоятельства. Во-первых, низкая теплопроводность и, как следствие, плохая детонационная стойкость мотора, не позволяющая использовать высокие степени сжатия. Во-вторых, большой удельный вес является препятствием к быстроходности. Из алюминиевых сплавов для поршней в используются силумины, то есть сплавы системы алюминий – кремний с различным содержанием кремния. Реже – ковкие сплавы системы алюминий – медь. Кремнийсодержащие сплавы в свою очередь делятся на две группы по содержанию в них кремния. Это – доэвтектические и заэвтектические. К первым относят сплавы с содержанием кремния до 12%, ко вторым – более 12%. У первых кремний в свободном виде, так называемый первичный кремний, отсутствует и весь он растворен в алюминии. Это АЛ-25, АЛ-30, АК12, Mahle 124. Вторая категория содержит кремний в свободном виде – в виде кристаллов, которые иногда видны невооруженным глазом на срезе или сломе образца. Известны АЛ-26, АК18, АК21, ВКЖЛС, Mahle 138, Mahle 224. Заэвтектические сплавы с содержанием 18% или 22% кремния применяются в основном для дизелей большого объема. Причина — в большей износостойкости и термопрочности, что важно для обеспечения ресурса седельных тягачей. В серийном производстве поршни из алюминиевых сплавов отливают. Для снижения величины температурного расширения, а значит, и для получения многорежимных свойств используются стальные термокомпенсирующие вставки внутри отливки. В мелкосерийном и штучном производстве для придания лучших механических характеристик заготовки поршней получают методом изотермической штамповки или жидкой штамповки. Высокие давления в процессе формирования поковок способствуют уплотнению материала и, как следствие, улучшению его свойств. Однако такая технология полностью исключает наличие любых вставок. Это обстоятельство делает изготовленные по такой технологии поршни в большей степени однорежимными. В основном такие поршни используются для сильно нагруженных моторов, выпускаемых малыми сериями. Спортивных, например. Для спортивных моторов, которые по назначению ближе к однорежимным, нашли применение сплавы алюминий – медь. Это АК-4-1, Mahle YG. Заготовки из них также прессуют. В сравнении с силуминами они имеют лучшие физико-механические характеристики при рабочих температурах, но отличаются на 20% большим коэффициентом линейного расширения. Также к недостаткам можно отнести быстрое старение и разрушение от усталостных напряжений. Тем не менее, в авиационных поршневых моторах, а также в автомобильных спортивных, которые ограничены по ресурсу и имеют повышенные требования к весу поршня, встречаются довольно часто. Несколько слов об износе. Правильно подобранный под требования мотора поршень почти никогда не контактирует со стенкой цилиндра. Исключение составляют холодные пуски и работа под нагрузкой непрогретого мотора. Поэтому, даже после значительного пробега, составляющего 200000 км и более, изменение размера юбки незначительно и лежит в пределах 0,01 – 0,03 мм, если двигатель нормально изнашивался. Гильза цилиндра, особенно в верхней ее части, может быть изношена кольцами до 0,15 мм. Но это не означает, что поршень можно продолжать использовать и он в состоянии, близком к новому. Основной параметр, по которому бракуется поршень, – износ канавок колец. Как правило, к этому сроку и форма, и размер канавки как минимум первого кольца за пределами допуска. Существенным обстоятельством не только износа, но и эффективности мотора является геометрия и состояние поверхности цилиндра. Во-первых, искажение цилиндричности так же влияет, как и неверная форма поршня в смысле сохранения зазоров в паре поршень – цилиндр. Наиболее вероятными причинами нарушения формы являются напряжения в блоке от крепежных элементов головки и КПП. Также важна микрогеометрия, т. е. глубина и форма хоновой сетки. Фирма Mahle, ведущий производитель поршней в Европе, считает, что преждевременный износ моторов, прошедших капитальный ремонт, в 80% случаев является следствием именно неправильного микрорельефа поверхности.

0

4

Спортивные распредвалы

Максимальная мощность двигателя и форма графика мощности зависят от распредвала больше, чем от остальных элементов двигателя.

Рассмотрим, как работает распредвал на примере одного цилиндра, и какие при этом существуют ограничения.

Впуск

В идеальном режиме, когда поршень движется вниз в цикле всасывания, впускной клапан открывается, пропуская в цилиндр топливовоздушную смесь, и закрывается после заполнения цилиндра. Учитывая, что фаза и «длительность» работы кулачка являются фиксированными, они будут идеальными лишь при определенной частоте вращения коленвала и, возможно, лишь при единственном положении дроссельной заслонки. Это то, чего многие не понимают. При разных оборотах двигателя клапан будет закрываться либо с опозданием, и тогда смесь, заполнившая цилиндр, начнет выходить обратно, либо раньше времени, до того, как смесь заполнит цилиндр до конца. Поэтому, в реальности, все распредвалы работают в компромиссном режиме. Если мы хотим получить от распредвала выигрыш только в мощности, то это произойдет за счет качества работы на холостых оборотах и крутящегой момента в режиме рабочего диапазона.

Начнем с начала. Период, в течение которого впускной клапан открыт, назовем термином «продолжительность». Продолжительность выражается в градусах поворота коленчатого вала. При работе стандартного распредвала клапан начинает открываться при «недовороте» коленвала 5-10 градусов до ВМТ (верхняя мертвая точка). Стандартный распредвал открывает клапан плавно — для уменьшения износа и снижения шума. Далее клапан достигает верхней точки и, наконец, закрывается примерно при 20 градусах после НМТ (нижняя мертвая точка). Этот период времени называют «продолжительностью работы кулачка». Обычно он составляет 200 – 220 градусов поворота коленчатого вала. Многие мотористы первым делом стараются увеличить продолжительность работы кулачка. Как правило, большая продолжительность позволяет двигателю развить большую мощность на повышенных оборотах. У высокопроизводительных распредвалов продолжительность работы кулачков может составлять от 250 до 320 градусов, а на гоночных двигателях — и более. Однако, само по себе это число пока еще ни о чем не говорит. Кулачок, например, может иметь очень пологие траектории подъема и опускания, тогда выигрыш в увеличении общей зоны открытия под клапаном, по сравнению со стандартным кулачком, получится небольшим. В то же время, кулачок с такой же продолжительностью, но с крутыми профилями будет обеспечивать очень быстрое открытие и закрытие, что придаст двигателю совершенно иные характеристики,

Подъем клапана

У стандартного распредвала для дорожных машин кулачок поднимает клапан на 9,6 мм, в то время как у спортивных двигателей эта цифра может доходить до 13,2 мм. Цифры, характеризующие высоту открытия клапана, часто производят впечатление — люди инстинктивно полагают, что чрезмерное увеличение высоты подъема дает большую мощность, хотя, это не совсем так. Иногда высоту подъема увеличивают для того, чтобы увеличить время «зависания» клапана в точке максимального подъема. Один из способов получения выигрыша по времени без увеличения продолжительности состоит в поднятии клапана на большую высоту.

С помощью испытательного стенда можно определить, в какой момент поток смеси через систему клапан — седло начинает убывать. После этого момента нет смысла открывать клапан дальше — это не даст выигрыша в мощности. Смысл быстрого открывания клапана, или «ускорения клапана», заключается в том, что само движение клапана используется для создания во впускном коллекторе разрежения — «импульса». Именно благодаря этому процессу мощность двигателя начинает зависеть от конструкции распредвала, так как этот импульс влияет на частоту вращения, что и приводит к увеличению мощности.

Выпуск

Выпускной кулачок должен открывать клапан достаточно рано, чтобы цилиндр успел очиститься от продуктов сгорания. При позднем открытии оставшиеся в цилиндре несгоревшие газы будут смешиваться с поступающей свежей смесью; раннее открытие может существенно снизить мощность рабочего хода, так как давление, толкающее поршень вниз, будет сбрасываться через выпускной канал. Тоже и при закрытии: если закрыть клапан слишком рано, то отработанные газы не успеют выйти, а если слишком поздно, то входящая порция смеси будет вытолкнута в выхлоп вместе со сгоревшими газами. Такое может происходить потому, что в момент прохода поршня через ВМТ при переходе от такта выпуска к такту впуска впускной и выпускной клапаны открыты одновременно. Это называется «перекрытием клапанов». Этот «перелив» из впускного канала в выпускной может дать двигателю несколько преимуществ. Во-первых, выхлопные газы, выходящие из цилиндра могут быть использованы для создания вакуума — нечто подобное происходит при выдергивании пробки из бутылки. Это будет помогать опускающемуся поршню втягивать в цилиндр свежую смесь. Во-вторых, выхлопную систему можно настроить так, что свежая смесь, переливающаяся в выпускной канал, будут втягиваться обратно в камеру сгорания перед самым закрытием выпускного клапана. Решающим обстоятельством является здесь не продолжительность перекрытия (выражаемая в градусах поворота коленчатого вала), а то, насколько высоко поднимаются клапаны в верхней мертвой точке. При стандартном распредвале высота подъема обоих клапанов в верхней мертвой точке может доходить до 0,76 мм, в то время, как для гоночных автомобилей эта величина достигает 5 мм. В целом, чем больше подъем клапанов при перекрытии, тем при больших оборотах двигатель достигает максимальной мощности, и тем хуже распределение мощности. Здесь уже возникает проблема зазора между клапанами и поршнем. При чрезмерно больших кулачках, дающих высокий подъем клапанов в фазе перекрытия, приходится делать в поршнях специальные углубления — «карманы», чтобы исключить столкновение поршня с клапанами к верхней мертвой точке.

Синхронизация распредвала

Может оказаться, что при одинаковом подъеме обоих клапанов в момент перекрытия модифицированный распредвал не дает максимальной эффективности. С помощью специального регулировочного шкива (его часто называют шкивом Верньера) можно выставить распредвал на «опережение», тогда в верхней мертвой точке впускной клапан будет подниматься больше, чем выпускной. Установка распредвала на «запаздывание» даст нам больший подъем выпускного клапана, чем впускного. Именно соотношение между подъемом двух клапанов в верхней мертвой точке и определяет эффективность работы распредвала. Теоретически, опережение распредвала будет смещать пик мощности вниз по диапазону оборотов, а отставание будет давать противоположный эффект. У некоторых двигателей, например Rover Мini и Ford, наилучшие результаты достигаются с опережающим распредвалом. Степень опережения выражается в градусах поворота коленвала, которое необходимо для полного открытия впускного клапана.

Продолжительность перекрытия в значительной степени определяется углом между выступами «впускного» и «выпускного» кулачков (этот угол называется «центральным углом кулачков»). Для распредвала с одинаковым подъемом клапанов в верхней мертвой точке этот угол составляет 110 градусов. Если вы выставите такой распредвал так, чтобы на 110 градусах он обеспечивал полное открытие впускного клапана, то обнаружите, что в момент перекрытия в верхней мертвой точке оба клапана открыты одинаково. Для обеспечения «опережающей» работы этого распредвала необходимо добиться полного открытия раньше, например, на 105 градусах.

Из вышеизложенного следует, что опережение распредвала можно регулировать, измеряя подъем клапанов в момент перекрытия в верхней мертвой точке. Независимо от того, какой это распредвал и на каком двигателе он стоит, одинаковый подъем клапанов в ВМТ будет иметь место при том угле поворота, на который развернуты друг относительно друга (в результате шлифовки) кулачки распредвала — обычно, 110 градусов. Можно выставить распредвал на опережение, но не следует его доводить до того, чтобы подъем выпускного клапана составлял меньше 66 процентов (2/3) от подъема впускного клапана. Например, если подъем впускного клапана — 3.8 мм, то подъем выпускного клапана — 2.5 мм. Распредвалы и их синхронизация — это очень сложная тема, доверять ее можно только профессионалам.

0


Вы здесь » Форум Peoplechat » тачки » 9ки моя любимая мафынка всё про её тюнинг